Synthesis of New Artemisinin Analogues from Artemisinic Acid Modified at C-3 and C-13 and Their Antimalarial Activity

J aehong Han, ${ }^{\dagger}$ J ung-Gul Lee, ${ }^{\dagger}$ Sun-Sik Min, ${ }^{\dagger}$ Si-Hyung Park, ${ }^{\ddagger}$ Cindy K. Angerhofer, ${ }^{\S, \downarrow}$ Geoffrey A. Cordell, ${ }^{\S}$ and Soo-Un Kim*,t
Graduate School of Agricultural Biotechnol ogy, Seoul National University, Suwon 441-744, and Plant Metabolism Research Center, Kyung Hee University, Yongin 449-701, Korea, Department of Medicinal Plant Resources, Mokpo National University, M okpo 534-729, K orea, and Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612-7230

Recei ved March 30, 2001

Artemisinic acid (2) was modified through allylic oxidation at C-3 or conjugate addition at C-13 to afford 12 methyl artemisinate derivatives (4-15). Photooxidation of the derivatives yielded eight new artemisinin analogues, including 13-cyanoartemisinin (16), 13-methoxycarbonyl artemisinin (17), 13-methoxyartemisinin (18), 13-ethylsulfonylartemisinin (19), 13-nitromethylartemisinin (20), 13-(1-nitroethyl)artemisinin (21), (3R)-3-hydroxyartemisinin (22), and (3R)-3-acetoxyartemisinin (23). Among the analogues, only compound $\mathbf{2 0}$ had antimalarial activity comparable to artemisinin (1).

Malaria, an epidemic disease, has been the major cause of death in tropical regions of the world since the prehistoric age, and new strains of drug-resistant Plasmodium falci parum are causing substantial deterioration in clinical situations. ${ }^{1}$ Chinese researchers reported on an antimaIarial compound, artemisinin (1), which is currently established as a clinically important drug against chloroquineresistant strains of P . falciparum. ${ }^{1}$ Recently, the activity was attributed to the disrupted hemoglobin catabol ism and heme detoxification systems in the parasite. ${ }^{2}$ Artemisinin, at the molecular level, was found to generate a carboncentered free radical intermediate in the parasite on interaction with heme-iron by opening the endoperoxide functionality of the molecule. ${ }^{3,4}$

The biological activity and the challenging structure of artemisinin have prompted extensive synthetic efforts to disclose analogues that have more potency and better pharmacokinetic properties compared to the parent molecule, while retaining its biologically crucial endoperoxide functionality. ${ }^{5}$ In parallel with the efforts on the total synthesis of artemisinin (1) via several routes, ${ }^{6}$ a semisynthetic approach from artemisinic acid has recently gained attention due to the simplicity in promoting the conversion into artemisinin and its abundance in the plant compared to artemisinin. ${ }^{7,8}$

Modifications to artemisinic acid would therefore present the possibility of more versatile structures because it would withstand harsher reaction conditions than artemisinin. Furthermore, artemisinic acid (2) has more functional groups available for chemical derivatization than artemisinin. As the first attempt to this approach, Kim et al. reported that a cyclopropyl anal ogue of artemisinic acid (2) could be photooxidized to afford the corresponding artemisinin. ${ }^{9}$ Acton et al. have also prepared several artemisinin analogues through a similar strategy via modification of artemisitene, a didehydro derivative of artemisinin. ${ }^{10} \mathrm{~A}$

[^0]semisynthesis of (3S)-3-hydroxyartemisinin was also reported in a similar line of thinking with the authors. ${ }^{11}$

Chemically, the C-11-C-13 double bond of artemisinic acid is very reactive to the Michael-type reactions. Furthermore, these chemical modifications are not likely to interfere with the subsequent photooxidation to form artemisinin derivatives. ${ }^{23-25}$ Derivatization of the C-3 site of 2 can also produce important C-3-derivatized artemisinins, which could enhance the knowledge regarding the action mechanism of artemisinin (1). ${ }^{12}$ We have thus chosen this approach to synthesize artemisinin analogues exploiting the facile modification of the C-11-C-13 double bond and the allylic C-3 position. The in vitro bioactivity of the prepared compounds against chloroquine-resistant Plasmodium strains is also reported.

Results and Discussion

Artemisinic acid (2) was first methylated quantitatively with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to protect the carboxyl group. When a large excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ is used, cycloaddition into the C-11-C-13 double bond also occurs, and the resulting cyclic diazo compound was utilized in the preparation of a cyclopropane derivative. ${ }^{9}$ This methylation was more effective and easier than the published method employing methyl p-toluenesulfonate. ${ }^{13}$

Conjugate addition and allylic oxidation reactions were carried out with methyl artemisinate (3), and the resulting derivatives are presented, with their ${ }^{13} \mathrm{C}$ NMR spectral data, in Table 1 in the Supporting Information. Hydrocyanation of 3 with KCN in AcOH resulted in methyl 13-cyano-11-hydroartemisinate (4) in 50\% yield. Addition of the nitrile group was established by the resonances at $\delta 2.80$ $(\mathrm{H}-11)$ and $2.58(\mathrm{H}-13)$ from ${ }^{1} \mathrm{H}$ NMR spectrum and the $v_{\text {max }}$ of $2225 \mathrm{~cm}^{-1}$ ($\mathrm{C} \equiv \mathrm{N}$ stretching) from the IR spectrum. This reaction resulted in two diastereomeric 11R- and 11Scompounds (2.3:1). Conjugate additions of methyl artemisininate at $\mathrm{C}-11-\mathrm{C}-13$ usually proceed with the addition of the hydrogen atom to the si-face at C-11 to yield 11Rdiasteomers in higher yields than the corresponding 11S isomers, because the 11R-form is morestable than the 11Sform. ${ }^{9}$ The $\mathrm{H}-5$ resonance of the isomers appeared at 5.04 (11R) and at 5.20 ppm (11S). Subsequent photooxygenation of the C-11-derivatized artemisinate resulted in only the (11R)-artemisinin analogue.

1. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{H}$
2. $R_{1}=H \quad R_{2}=C N$
3. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
4. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{OCH}_{3}$
5. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
6. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{NO}_{2}$
7. $R_{1}=H \quad R_{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NO}_{2}$
8. $\mathrm{R}_{1}=\mathrm{OH} \quad \mathrm{R}_{2}=\mathrm{H}$
9. $R_{1}=O A C \quad R_{2}=H$

10. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COOH}$
11. $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
12. $\mathrm{R}_{1}=\mathrm{OH} \quad \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
13. $\mathrm{R}_{1}=\mathrm{OAC} \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
efficacy of the drug against Plasmodium and should be more informative than the substitution at $\mathrm{H}_{\text {pros }}-3$ reported by Acton. ${ }^{11}$ Sharpless allylic oxidation was used to substitute $\mathrm{H}_{\text {proR }}-3$ with a hydroxy group, resulting in the synthesis of the allylic al cohol $\mathbf{1 2}$ (78\% yield). ${ }^{14}$ The assignment of configuration at C-3 was deduced as 3 R through the examination of $\mathrm{J}_{\mathrm{H} 2-\mathrm{H} 3}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and the comparison of the spectral data with those of the literature. ${ }^{11,15}$ M ethyl (3R)-3-acetoxyartemisinate (13, 96\% yield) was prepared through the reaction with acetic anhydride in pyridine. The derivatized compounds at C-3 were hydrogenated using Acton's method ${ }^{8}$ to prepare methyl (3R)-11,13-di hydro-3-hydroxyartemisinate (14) and (3R)-3-acetoxy-11,13-dihydroartemisinate (15) with the neutral workup procedure. The reported acidic workup ${ }^{8}$ yielded several byproducts, thus resulting in a lower yield of 15. Confirmation of the configuration at $\mathrm{C}-11$ was not possible in 15 owing to the unresolved proton signals of $\mathrm{H}-7, \mathrm{H}-11$, and $\mathrm{H}-13$.

Syntheses of the artemisinin analogues from the artemisinic acid derivatives were carried out through the method of Haynes ${ }^{7}$ or Acton ${ }^{8}$ with modifications in reaction temperature and time. Their ${ }^{13} \mathrm{C}$ NMR spectral data are shown in Table 2 in the Supporting Information. Time required for the oxidation with artemisinic acid derivatives, as revealed by monitoring the disappearance of the starting material using TLC, was different from compound to compound. This may reflect the quenching and scavenging capacities of the newly introduced functional groups at C-3 and C-13. For example, because the amino group is a wellknown scavenger of ${ }^{1} \mathrm{O}_{2},{ }^{16}$ the amine derivatives required longer photooxygenation time.

The isolated yield of 13-cyanoartemisinin (16) was 5\% from starting material 4. Conversion of the initial hydroperoxide adduct into $\mathbf{1 6}$ was slow, requiring several weeks. The endo-peroxide structure was elucidated through a combination of IR (1109, 880, $827 \mathrm{~cm}^{-1}$), mass, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies, and the correlation of the protons was checked through ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HETCOR. The chirality at C-11 was confirmed as R through the comparison of its coupling constant, J $\mathrm{H} 7-\mathrm{H} 11=5.2 \mathrm{~Hz}$, with artemisinin. The (11S)-diastereomer of 4 was not converted to the corresponding artemisinin analogue, but part of it was reisolated from the reaction product. In the photooxidation of methyl 13-carboxy-11-hydroartemisinate (5), no desired artemisinin analogue was obtained using either Haynes' or Acton's methods. ${ }^{7,8}$ It was interpreted that the singlet oxygen adduct of methyl 13-carboxy-11-hydroartemisinate (5) was so unstable that the putative hydroperoxide intermediate led to several unidentified byproducts, other than the expected 13-carboxyartemisinin. The presence of the electron-withdrawing carboxyl group may have interfered with the electrophilic triplet oxygen oxidation, as reported by J ung. ${ }^{17}$ Thus, further derivatization of 5 to methyl 11-hydro-13-methoxycarbonylartemisinate (6) was carried out to obtain the corresponding artemisinin analogue, 13-methoxycarbonylartemisinin (17), in a low yield of 4.3%. Predominant formation of a diketone, methyl 11-hydro-13-methoxycarbonylartemisinate, during photooxidation and its mechanistic implication were reported elsewhere. ${ }^{18}$
The close structural relationship of 13-methoxyartemisinin (18) and 13-ethylsulfonylartemisinin (19) to artemisinin (1) was clearly demonstrated through a comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of the three compounds (Table 2, Supporting Information). Oxidation of the nitro compounds $(\mathbf{1 0}, \mathbf{1 1})$ afforded 13-nitromethylartemisinin (20) and 13-

Table 1. In Vitro Antimalarial Activity of Artemisinin (1) and Its Derivatives against P. falciparum Strains D6 (Sierra Leone) and W2 (Indochina) ${ }^{\text {a }}$

compound	$\mathrm{IC}_{50}(\mathrm{ng} / \mathrm{mL})$	
	D 6	W 2
artemisinin (1)	0.5	0.2
chloroquine	4.9	66.4
quinine	19.6	102
mefloquine	6.3	3.6
11-cyclopropylidenylartemisinin20	6.2	4.3
13-cyanoartemisinin (16)	18.4	8.4
13-methoxycarbonylartemisinin (17)	46	33
13-methoxyartemisinin (18)	75	59
13-ethylsulfonylartemisinin (19)	>500	>500
13-nitromethylartemisinin (20)	0.68	0.26
13-(1-nitroethyl)artemisinin (21)	12.8	3.86
(3R)-3-acetoxyartemisinin (23)	11.1	2.07

${ }^{\text {a }}$ Activities of compounds 1, 16-21, and $\mathbf{2 3}$ against KB were $>20000 \mathrm{ng} / \mathrm{mL}$.
(1-nitroethyl)artemisinin (21). The photooxygenation of methyl (3R)-11,13-dihydro-3-hydroxyartemisinate (14) and methyl (3R)-3-acetoxy-11,13-dihydroartemisinate (15) and the subsequent acid-catalyzed rearrangement occurred at very slow rates, the rearrangement requiring one month at room temperature to obtain enough 22 (7.7% yield) and 23 (3.1\% yield) for spectral analyses.

The antimalarial activity of 13-nitromethylartemisinin (20) was comparable to that of artemisinin (1) among the prepared analogues (Table 1), but 13-(1-nitroethyl)artemisinin (21) was about 20 -fold less active, indicating that the activity was very sensitive to the bulkiness of the side chain. Activities of the remaining synthesized derivatives were inferior to that of artemisinin. Interestingly, compound $\mathbf{2 0}$ showed activity against the vinblastine-resistant $\mathrm{KB}-\mathrm{V}$ cell-line with IC_{50} values of 5.1 and $5.4 \mathrm{ng} / \mathrm{mL}$, with or without vinblastine, respectively. The antiplasmodial activity of the (3R)-acetoxy derivative (23) was lower than that of artemisinin, reflecting the importance of proton abstraction for the action of artemisinin. ${ }^{3,4}$ However, the activity was still better than that of quinine, signifying that abstraction of the acetoxy group is efficient enough to substitute for $\mathrm{H}_{\text {proR }}-3$ loss. The activities of (3S) -8 and (3R)-3-hydroxyartemisinin are yet to be determined to fully understand the effect of stereospecific substitution with a hydroxy moiety at C-3.

Experimental Section

General Experimental Procedures. Melting points were determined using a Meltemp apparatus (Laboratory Devices, Holliston, MA). NMR spectra were obtained on a Bruker AC80, J EOL J NM-GSXN 400, or Bruker ARX-400 spectrometer. The GC-MS was operated on an HP 5980II GC-HP 5988 MS in the EI or CI mode, and an SPB-5 ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m})$ column was used. Direct mass and IR spectra were obtained using a VG 70VS2Q spectrometer and a Perkin-Elmer 1710 FT-IR spectrometer, respectively. MMX cal culations were carried out using PCMODEL (Serena Software, Bloomington, IN). To obtain the energy-minimized structures, the subroutines MMX and RANDOMIZ were used. PMR was used to cal culate the coupling constants of the vicinal protons. Column chromatography for the separation of the photooxidation products was routinely used employing a hexane-acetone sol vent system. VLC was also used when necessary, applying the same solvent system as column chromatography. ${ }^{19}$ Artemisinic acid (2) was isolated, following the reported method, from A. annua L., which has been maintained at the garden of Seoul National University. ${ }^{20}$ Its purity was checked through the measurement of melting point ($131{ }^{\circ} \mathrm{C}$) and NMR spec-
troscopy. ${ }^{13} \mathrm{C}$ NMR data of compounds 1-23 are presented in Tables 1 and 2 (Supporting Information).

Antimalarial Bioassay. The in vitro antimalarial activity against two strains of Plasmodium fal ci parum was determined against the chloroquineresistant W2 and chloroquine-sensitive D6 strains as described elsewhere. ${ }^{21}$ Cytotoxicity against the KB cell-line was also assessed to estimate the selectivity.

Syntheses. Methyl artemisinate (3) was prepared through methylation of artemisinic acid (2) using $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Conjugate addition of cyanide yielded 13-cyano-11-hydroartemisinate (4), and subsequent alkaline hydrolysis yielded methyl and methyl 13-carboxy-11-hydroartemisinate (5). Methanolysis of the cyanide (4) resulted in the formation of methyl 11-hydro-13methoxycarbonylartemisinate (6). Reaction of the ester (3) and methoxide yielded methyl 11-hydro-13-methoxyartemisiniate (7) through conjugate addition. ${ }^{22}$ Similar conjugate addition of ethyl sulfide produced methyl 13-ethylthio-11-hydroartemisinate (8), ${ }^{23}$ and methyl 13-ethylsulfonyl-11-hydroartemisinate (9) was prepared through subsequent oxidation of $\mathbf{8}$ by $\mathrm{H}_{2} \mathrm{O}_{2} .{ }^{24}$ Methyl 11-hydromethylartemisinate (10) and methyl 11-hydro-13-(1-nitroethyl)artemisinate (11) were obtained through the reaction of $\mathbf{3}$ with corresponding nitroal kanes in the presence of potassium metal. ${ }^{25}$ The Sharpless oxidation ${ }^{14}$ successfully introduced a hydroxy group at C-3 to produce methyl (3R)-3-hydroxyartemisinate (12), and subsequent acetyIation of 12 yielded methyl (3R)-acetoxyartemisinate (13). ${ }^{26}$ Reduction of the C-11-C-13 double bond of 12 and 13 by NaBH_{4} yielded the dihydro compounds $\mathbf{1 4}$ and $\mathbf{1 5}$ suitable for subsequent reaction with singlet oxygen, respectively. ${ }^{8}$ Photooxygenation of the artemisinic acid derivatives 4-15 was performed either through Haynes' or Acton's method ${ }^{7,8}$ to yield the artemisinin derivatives 16-23, respectively. Detailed synthetic procedures are given in the Supporting Information.

Methyl artemisinate (3): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 6.28$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 5.43 (1H , s, H-13), 4.99 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5$), 3.73 (3 H , $\left.\mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6), 1.59$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-15$), $0.89\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}-14\right)$; EIMS (70 eV, rel int) m/z 248 ([M] ${ }^{+}, 37$), 121 (100).

Methyl 13-cyano-11-hydroartemisinate (4): Only the spectra of the 11R major product are presented here. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right): \delta 5.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 3.78(3 \mathrm{H}, \mathrm{s}, 12-$ COOCH_{3}), $2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{H}-13)$, $2.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5$ Hz, H-14); EIMS (70 eV, rel int) m/z 275 ([M] ${ }^{+}$, 3), 162 (100), 147 (20), 121 (10), 105 (11), 91 (16).

Methyl 13-carboxy-11-hydroartemisinate (5): Only the spectra of the major product are presented: IR (KBr) $v_{\max } 3200$ ($\mathrm{O}-\mathrm{H}$ stretching), 1734 ($\mathrm{C}=\mathrm{O}$ stretching), 1686 ($\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 7.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH})$, $5.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.74\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11)$, $2.70(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 2.40(1 \mathrm{H}, \mathrm{br}$ s, H-6), 1.64 (3H, s, H-15), 0.88 (3H, d, J = $5.0 \mathrm{~Hz}, \mathrm{H}-14$); EIMS (70 eV, rel int) m/z 294 ([M] ${ }^{+}$, 23), 276 ($\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 36$), 249 ($[\mathrm{M}-\mathrm{COOH}]^{+}, 19$), 162 (100), 147 (76), 107 (46), 91 (83).

Methyl 11-hydro-13-methoxycarbonylartemisinate (6): Only the spectra of the major product are presented: IR (KBr) $v_{\max } 1740$ ($\mathrm{C}=0$ stretching), 1438 ($\mathrm{C}=\mathrm{C}$ stretching), 1260 ($\mathrm{C}-\mathrm{O}$ stretching), 1165 ($\mathrm{C}-\mathrm{O}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 5.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.61\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 3.56(3 \mathrm{H}$, $\left.\mathrm{s}, 16-\mathrm{COOCH}_{3}\right), 2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, H-13), $2.33(1 \mathrm{H}, \mathrm{br} s, \mathrm{H}-6), 1.63(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, \mathrm{H}-14)$; EIMS (70 eV , rel int) m/z 308 ([M] ${ }^{+}, 10$), 277 $\left(\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}, 19\right), 249\left(\left[\mathrm{M}-\mathrm{COOCH}_{3}\right]^{+}, 11\right), 162(98), 146$ (100), 114 (39), 107 (15), 91 (17); HREIMS (70 eV) m/z 308.1987 (obsd), 308.1988 (calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$).

Methyl 11-hydro-13-methoxyartemisinate (7): IR (KBr) $v_{\max } 1740$ ($\mathrm{C}=0$ stretching), 1436 ($\mathrm{C}=\mathrm{C}$ stretching), 1165 (C-O stretching), 1115 ($\mathrm{C}-\mathrm{O}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 5.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.72\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 3.63(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-13), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.48(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{H}-6), 1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, $1.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 0.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-14), 0.86(1 \mathrm{H}, \mathrm{m}$, H-9); EIMS (70 eV, rel int) m/z 280 ([M] ${ }^{+}, 20$), 248 ([M $\left.\left.\mathrm{OCH}_{3}\right]^{+}, 29\right), 217$ (17), 162 (100), 147 (98), 119 (87), 105 (72),

91 (60); HREIMS (70 eV) m/z 280.2018 (obsd), 280.2038 (cal cd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}$).

Methyl 13-ethylthio-11-hydroartemisinate (8): Only the spectra of the major product are presented: IR ($\mathrm{KBr)} v_{\text {max }}$ 1739 ($\mathrm{C}=\mathrm{O}$ stretching), 1420 ($\mathrm{C}=\mathrm{C}$ stretching), 1145 ($\mathrm{C}-\mathrm{O}$ stretching), 690 ($\mathrm{C}-\mathrm{S}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 5.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.63\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.46(2 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6), 1.62(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-15), 1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, $0.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 0.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$, H-14); EIMS (70 eV, rel int) m/z 310 ([M] ${ }^{+}, 20$), 295 ($[\mathrm{M}-$ $\left.\left.\mathrm{CH}_{3}\right]^{+}, 4\right), 281\left(\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}, 3\right), 279\left(\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}, 4\right), 248$ (7), 162 (100), 147 (20), 119 (8), 105 (9); HREIMS (70 eV) m/z 310.1984 (obsd), 310.1967 (calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}$).

Methyl 13-ethylsulfonyl-11-hydroartemisinate (9): Only the spectra of the major product are presented: mp 155-161 ${ }^{\circ} \mathrm{C} ;[\alpha]^{7} \mathrm{D}+29.17^{\circ}$ (c $0.01, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\max } 1739(\mathrm{C}=\mathrm{O}$ stretching) 1305 ($\mathrm{S}=\mathrm{O}$ stretching), 1126 ($\mathrm{S}=\mathrm{O}$ stretching) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.73(3 \mathrm{H}$, $\left.\mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.98\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{SOOCH}_{2} \mathrm{CH}_{3}\right), 1.62$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.41\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{SOOCH}_{2} \mathrm{CH}_{3}\right), 0.83(3 \mathrm{H}$, d, J = $6.5 \mathrm{~Hz}, \mathrm{H}-14)$; CIMS (CH 4 , rel int) m/z 343 ($[\mathrm{M}+\mathrm{H}]^{+}$, 100), 311 (88), 283 (20), 162 (19).

Methyl 11-hydro-13-nitromethylartemisinate (10): IR (KBr) $v_{\max } 1723$ ($\mathrm{C}=\mathrm{O}$ stretching), 1556 ($\mathrm{N}=\mathrm{O}$ stretching), 1374 ($\mathrm{N}=\mathrm{O}$ stretching), 1168 ($\mathrm{C}-\mathrm{O}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right)$, $3.72\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.6(1 \mathrm{H}, \mathrm{tdd}, \mathrm{J}=11,4,2 \mathrm{~Hz}, \mathrm{H}-7)$, 2.5 (1 H , br s, H-6), 2.45 (1 H , ddd, J $=14,8,4 \mathrm{~Hz}, \mathrm{H}-13$), 2.13 (2H, m, H-11, H-13), 2.0-1.8 (3H, m, H-2, H-3), 1.7-1.5 (5 H , m, H-2, H-9, H-15), 1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 1.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$) , $0.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-14)$; EIMS (70 eV, rel int) m/z 309 ([M] ${ }^{+}$, 0.93), 274 (34), 261 (10), 162(100), 147 (32), 121 (17), 105 (22); HRCIMS (CH_{4}) m/z 310.2033 (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 310.2018 (calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}$).

Methyl 11-hydro-13-(1-nitroethyl)artemisinate (11): IR $(\mathrm{KBr}) \nu_{\max } 1727.7,1552.4,1358.8,1168.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 5.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.45(2 \mathrm{H}, \mathrm{qt}, \mathrm{J}=6.7$, $2.5 \mathrm{~Hz}, \mathrm{H}-16), 3.72\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.5(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7)$, $2.4(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.5,10.5,3.5 \mathrm{~Hz}, \mathrm{H}-13), 2.0-1.75(5 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-11$), 1.83 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.5,11.0,3.0 \mathrm{~Hz}, \mathrm{H}-13$), $1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-15\right), 1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7$ $\mathrm{Hz}, \mathrm{H}-17$), 1.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), $1.35-1.2$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-8$), 1.11 (1H, ddd, J $=24.8,12.4,3.2 \mathrm{~Hz}, \mathrm{H}-8), 0.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 25.9, 12.7, $3.7 \mathrm{~Hz}, \mathrm{H}-9$), 0.87 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}-14$); HRCIMS m/z 324.2199 (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 324.2175 (calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}$).

Methyl (3R)-3-hydroxyartemisinate (12): IR (KBr) $\nu_{\text {max }}$ 3201 ($\mathrm{O}-\mathrm{H}$ stretching), 1721 ($\mathrm{C}=\mathrm{O}$ stretching), 1627 ($\mathrm{C}=\mathrm{C}$ stretching), 1436 ($\mathrm{O}-\mathrm{H}$ bending), 1320 ($\mathrm{O}-\mathrm{H}$ bending), 1044 ($\mathrm{C}-\mathrm{O}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$), $\delta 6.30$ (1 H , s, H-13), 5.46 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 5.13 (1H, s, H-5), 4.08 (1 H , dd, J $=10.4,4.9 \mathrm{~Hz}, \mathrm{H}-3), 3.76\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.68(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-7), 2.67$ (1H, s, H-6), 2.41 (1 H , ddd, J $=13.3,4.9,3.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{\text {pror }}-2\right), 1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.60(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1), 1.48$ (1 H, ddd, J $=13.3,10.4,3.2 \mathrm{~Hz}, \mathrm{H}_{\text {pros }}-2$), $1.38(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-10), 1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.6,3.4 \mathrm{~Hz}$, H-9), 0.96 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-14$); EIMS (70 eV , rel int) m/z 264 ([M] ${ }^{+}, 2.2$), 246 ([M $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 100$), 214 (50), 186 (78), 159 (66), 131 (52), 119 (100), 105 (65); HREIMS (70 eV) m/z 264.1709 (obsd), 264.1725 (calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$).

Methyl (3R)-3-acetoxyartemisinate (13): IR (KBr) $\nu_{\text {max }}$ 1737 ($\mathrm{C}=\mathrm{O}$ stretching), 1717 ($\mathrm{C}=\mathrm{O}$ stretching), 1626 ($\mathrm{C}=\mathrm{C}$ stretching) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 6.31(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-13$), 5.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 5.34 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{H}-3$), 5.24 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $3.75\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 2.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$, $2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-\right), 1.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $13.0,3.0 \mathrm{~Hz}, \mathrm{H}-9), 1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)$, 1.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-10$), 1.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.04 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,3.5 \mathrm{~Hz}, \mathrm{H}-9$), $0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-14)$; HRCIMS $\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 307.1911$ (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 307.1909 (calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4}$).

Methyl (3R)-11,13-dihydro-3-hydroxyartemisinate (14): M ethyl (3R)-11,13-dihydro-3-hydroxyartemisinate (14) always contained an impurity, which prevented spectroscopic analy-
ses. However, the synthesis of $\mathbf{1 4}$ was apparent since the corresponding artemisinin was subsequently synthesized from 14.

Methyl (3R)-3-acetoxy-11,13-dihydroartemisinate (15): IR (KBr) $\nu_{\max } 1737(\mathrm{C}=\mathrm{O}$ stretching), $1732(\mathrm{C}=0$ stretching $)$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.31(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-5), 3.67\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{COOCH}_{3}\right), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6), 2.51$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), $2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}\right), 1.7-$ 1.4 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-15$), 1.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-13), 1.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 0.95(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}-14)$; HRCIMS $\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 309.2084$ (obsd for [M + H^{+}), 309.2066 (calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4}$).

13-Cyanoartemisinin (16): IR (neat) $v_{\max }$ 2905, 2225 ($\mathrm{C} \equiv \mathrm{N}$ stretching), 1730 ($\mathrm{C}=\mathrm{O}$ stretching), 1186, 1109, 889, 827 (peroxide) cm^{-1}; 1 H NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.00$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $3.70(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.8,5.2,5.1 \mathrm{~Hz}, \mathrm{H}-11), 3.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $17.2,10.8 \mathrm{~Hz}, \mathrm{H}-13), 2.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.2,5.1 \mathrm{~Hz}, \mathrm{H}-13)$, $2.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.07$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), $1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9), 1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and H-10), 1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.47 (3H, s, H-15), 1.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.17 (1H, m, H-8), 1.04 (3H , d, J = 5.9 Hz, H-14); CIMS (CH 4) $\mathrm{m} / \mathrm{z} 308\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 307\left([\mathrm{M}]^{+}, 4\right), 290\left(\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right.$, 73), 276 ($\left.\left[\mathrm{M}+\mathrm{H}-\mathrm{O}_{3}\right]^{+}, 9\right), 248$ (75).

13-Methoxycarbonylartemisinin (17): $[\alpha]^{7} \mathrm{D}-54.05^{\circ}$ (C $0.01, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\text {max }} 1730$ ($\mathrm{C}=0$ stretching), 1104 ($\mathrm{C}-\mathrm{O}$ stretching), 1120, 880,837 (peroxide) $\mathrm{cm}^{-1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.12-\mathrm{COOCH}_{3}\right), 2.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.4,6.8 \mathrm{~Hz}, \mathrm{H}-13), 2.43(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3$), 2.36 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.4,8.5 \mathrm{~Hz}, \mathrm{H}-13$), 2.05 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3), 1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, 1.69 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.47 (3H, s, H-15), 1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-10$), $1.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.03$ (3H, d, J = $5.9 \mathrm{~Hz}, \mathrm{H}-14$); CIMS (CH 4 , rel int) m/z 341 ($[\mathrm{M}+$ $\left.\mathrm{H}]^{+}, 100\right), 340\left([\mathrm{M}]^{+}, 4\right), 322\left(\left[\mathrm{M}+\mathrm{H}^{2}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 73\right), 291$ (45); HRCIMS $\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 341.1587$ (obsd for [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$), 341.1600 (calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{7}$).
13-Methoxyartemisinin (18): mp 100-104 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{7} \mathrm{D}$ $+82.38^{\circ}\left(\mathrm{c} 0.01, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 1730(\mathrm{C}=0$ stretching), 1188, 1104 (C-O stretching), 1113, 889, 834 (peroxide) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.81(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=9.1,4.3 \mathrm{~Hz}, \mathrm{H}-13), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,4.3 \mathrm{~Hz}, \mathrm{H}-13)$, 3.51 (1H, m, H-11), $3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.98$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.81 (1 H , m, H-8), 1.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.38 (2H, m, H-1, H-10), 1.36 (3H, $\mathrm{s}, \mathrm{H}-15), 1.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.05(1 \mathrm{H}, \mathrm{m}$, H-9), 0.92 (3H, d, J = 3.7, H-14); CIMS (CH4, rel int) m/z 313 $\left([M+H]^{+}, 100\right), 312\left([M]^{+}, 4\right), 295\left(\left[M+H-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 73\right), 267$ ($\left[\mathrm{M}+\mathrm{H}-\mathrm{O}_{3}\right]^{+}, ~ 9.16$), 265 (14); $\mathrm{HRCIMS}\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 313.1648$ (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 313.1651 (cal cd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{6}$).
13-Ethylsulfonylartemisinin (19): $\mathrm{mp} 169-172^{\circ} \mathrm{C}$; $[\alpha]^{7} \mathrm{D}$ $+35.73^{\circ}$ (c $0.01, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\text {max }} 1735(\mathrm{C}=0$ stretching), $1325\left(\mathrm{SO}_{2}\right.$ asymmetric stretching), $1136\left(\mathrm{SO}_{2}\right.$ symmetric stretching), 1115, 879,840 (peroxide) $\mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) $\delta 5.92(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.06$ (1 H , ddd, J $=10.2,5.0,4.2$ $\mathrm{Hz}, \mathrm{H}-11), 3.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.6,4.2 \mathrm{~Hz}, \mathrm{H}-13), 3.11(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.6,5.0 \mathrm{~Hz}, \mathrm{H}-13)$, 2.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 2.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.44 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{H}-14)$; CIMS (CH_{4}, rel int) m/z 403 ($\left[\mathrm{M}+\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}, 17$), $375\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 56), 315 (100), 281 (26), 221 (60); HRCIMS (CH_{4}) m/z 375.1402 (obsd for $\left[\mathrm{M}+\mathrm{H}^{+}\right.$), 375.1399 (cal cd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{SO}_{7}$).

13-Nitromethylartemisinin (20): IR (KBr) $v_{\max } 1734$ ($\mathrm{C}=\mathrm{O}$ stretching), 1551 ($\mathrm{N}=\mathrm{O}$ stretching), 1388 ($\mathrm{N}=\mathrm{O}$ stretching), 1116, 883, 835 (peroxide) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.83(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14,7.3,7.3 \mathrm{~Hz}$, $\mathrm{H}-16), 4.63$ (1 H , ddd, J = 14, $7.9,5.9 \mathrm{~Hz}, \mathrm{H}-16$), 3.35 (1 H , ddd, $\mathrm{J}=9.3,5.0,4.6 \mathrm{~Hz}, \mathrm{H}-11), 2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-13), 2.09(1 \mathrm{H}$, m, H-2), 2.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-13$), 1.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8$), 1.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.43 (1 H , $\mathrm{m}, \mathrm{H}-1), 1.14(2 \mathrm{H}, \mathrm{m} \mathrm{H}-8, \mathrm{H}-9), 1.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}-14)$; CIMS (CH 4 , rel int) m/z 342 ([M + H] ${ }^{+}$, 68), 324 (80), 296 (96), 282 (100), 249 (55); HRCIMS (CH 4) m/z 342.1555 (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 342.1553 (calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}$).

13-(1-Nitroethyl)artemisinin (21): IR (KBr) $\nu_{\text {max }}$ 1735.2, $1553.7,1385.2,1115,883.2,831.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
$\mathrm{MHz}), \delta 5.87$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 5.04 ($1 \mathrm{H}, \mathrm{qt}, \mathrm{J}=7,3.3 \mathrm{~Hz}, \mathrm{H}-16$), $3.30(1 \mathrm{H}, \mathrm{dt}$, J = 9, $4.5 \mathrm{~Hz}, \mathrm{H}-11), 2.43(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14,3.5 \mathrm{~Hz}$, $\mathrm{H}-3$), $2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 2,0.0(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, 1.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.61 (3H, d, J $=7 \mathrm{~Hz}, \mathrm{H}-17$), 1.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-15$), $1.44(1 \mathrm{H}, \mathrm{m}$, H-10), 1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.01 (3H, d, J $\left.=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}-14\right)$; CIMS (CH_{4}, rel int) m/z 356 ([M + H] ${ }^{+}, 57$), $340\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 39.3\right), 310$ (100); HRCIMS $\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 356.1718$ (obsd for $[\mathrm{M}+\mathrm{H}]^{+}$), 356.1709 (calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N}$).
(3R)-3-Hydroxyartemisinin (22): IR (KBr) $v_{\max } 3468$ ($\mathrm{O}-\mathrm{H}$ stretching), 1747 ($\mathrm{C}=\mathrm{O}$ stretching), 1148, 882, 826 (peroxide) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$, $4.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 3.30(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3,5.4 \mathrm{~Hz}, \mathrm{H}-11), 2.16$ (1 H, ddd, J $=14.7,6.8,2.7 \mathrm{~Hz}, \mathrm{H}-2$), 1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.791.72 (3H, m, H-2, H-7, H-9), 1.54 (1 H, ddd, J $=11,11,6.8 \mathrm{~Hz}$, $\mathrm{H}-1), 1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.16(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, \mathrm{H}-13), 1.03(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9), 0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}$, H-14); CIMS (CH 4 , rel int) m/z 299 ([M + H] , 20), 281 ([M + $\left.\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 51$), 239 (100), 207 (83).
(3R)-3-Acetoxyartemisinin (23): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,6.5 \mathrm{~Hz}, \mathrm{H}-3)$, 3.40 (1H , m, H-11), 2.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-$), 1.95-1.5 (5H, m, H-2, H-7, H-8, H-9), 1.45 (3H, s, H-15), 1.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.21 (3H, d, J $=7 \mathrm{~Hz}, \mathrm{H}-13$), 1.17 (2H, m, H-1, H-8), 1.05 (1 H , m, H-9), $0.99(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}-14)$; CIMS (CH_{4}, rel int) m / z $341\left([M+H]^{+}, 35\right), 281\left(\left[M-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]^{+}, 75\right), 249(100), 221$ (64).

Acknowledgment. S.-U.K. thanks funding from PMRC supported by Korea Science and Engineering Foundation, and a grant (PF003102-00) from the Frontier Research Program through Plant Diversity Research Center funded by the Ministry of Science and Technology, Korea. The Brain 21 Korea Project administered by the Ministry of Education, K orea, is also appreciated. The fellowship to J.H. and J.-G.L. was from the Research Center for New Biomaterials in Agriculture, Seoul National University, and to S.S.M. from the Subtropical Horticulture Research Center, Cheju National University.

Supporting Information Available: Detailed synthetic procedures and tables showing the ${ }^{13} \mathrm{C}$ NMR data of compounds 1-23. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Marshall, E. Science 2000, 290, 438-439.
(2) Pandey, A. V.; Tekwani, B. L.; Singh, R. L.; Chauhan, V. S. J. Biol. Chem. 1999, 274, 19383-19388.
(3) Meshik, S. R. Med. Trop. 1998, 58, 13-17.
(4) Posner G. H.; Wang, D.; Cumming, J. N.; Oh, C. H.; French, A. N.; Bodley, A. L.; Shapiro, T. A. J. Med. Chem. 1995, 23, 2273-2275.
(5) Dong, Y.; Matile, H.; Chollet, J .; Kamisky, R.; Wood, J. K.; Vennerstrom, J. L. J. Med. Chem. 1999, 42, 1477-1480.
(6) Avery, M. A.; Fan, P.; Karle, J. M.; Miller, R.; Goins, K. Tetrahedron Lett. 1995, 36, 3965-3968, and references therein.
(7) Haynes, R. K.; Vonwiller, S. C. J. Chem. Soc., Chem. Comm. 1990, 451-453.
(8) Acton, N.; Roth, R. J. J . Org. Chem. 1992, 57, 3610-3614.
(9) Kim, S.-U.; Choi, J.-H.; Kim, S.-S. J . Nat. Prod. 1993, 56, 857-863.
(10) Acton, N.; Karle, J . M.; Miller, R. E. J . Med. Chem. 1993, 36, 25522557.
(11) Acton, N. J. Nat. Prod. 1999, 62, 790-793.
(12) Posner, G. H.; Cumming, J. N.; Ploypradith, P.; Oh, C. H. J. Am. Chem. Soc. 1995, 117, 5885-5886.
(13) Vonwiller, S. C.; Warner, J. A.; Mann, S. T.; Haynes, R. K. J . Am. Chem. Soc. 1995, 117, 11098-11105.
(14) Sharpless, K. B.; Umbreit, M. A. J . Am. Chem. Soc. 1977, 99, 55265528.
(15) Elmarakby, S. A.; El-Feraly, F. S.; Elsohly, H. N.; Croom, E. M.; Hufford, C. D. Phytochemistry 1988, 27, 3089-3091.
(16) Ogryzlo, E. A. In Singlet Oxygen (Reactions with Organic Compounds and Polymers); Ranby, B., Rabek, J . F., Eds.; J ohn Wiley \& Sons: New York, 1976; pp 17-27.
(17) J ung. M.; ElSohly, H. N.; Croom, E. M.; McPhail, A. T.; McPhail, D. R. J Org. Chem. 1986, 51, 5417-5419.
(18) Lee, J.-K.; Han, J.; Kim, J .-H.; Lim, Y .-H.; Kim, S.-U. J . Photoscience 1994, 1, 127-129.
(19) Targett, N. M.; Kikoyne, J. P.; Green, B. J. Org. Chem. 1972, 44, 4962-4964.
(20) Kim, S.-U.; Lim, H.-J . J . Korean Agricul. Chem. Soc. 1989, 32, 178179.
(21) MacKinnson, S.; Durst, T.; Arnason, J. T.; Angerhofer, C.; Pezzuto, J.; Sanchez-Vindas, P. E.; Poveda, L. J .; Gbeassor, M. J . Nat. Prod. 1997, 60, 336-341.
(22) Robert, V. S.; Wing, H. C.; Andrej, R. D. J. Am. Chem. Soc. 1986, 108, 1039-1049.
(23) Kuwajima, I.; Nakamura, E. J . Am. Chem. Soc. 1972, 97, 3257-3258.
(24) Poje, M.; Balenovic, K. Tetrahedron. Lett. 1978, 14, 1231-1232.
(25) Schmuff, N. R.; Trost, B. M. J . Org. Chem. 1983, 48, 1404-1412.
(26) Paaren, H. E.; DeLuca, H. F.; Schnoes, H. K. J. Org. Chem. 1980, 45, 3253-3258.

NP0101752

[^0]: * To whom correspondence should be addressed. Tel: 82-31-290-2401 Fax: 82-31-293-8608. E-mail: soounkim@plaza.snu.ac.kr.
 ${ }^{\dagger}$ Graduate School of Agricultural Biotechnology, SNU (mailing address) and PMRC.
 \ddagger Mokpo National University.
 § University of Illinois at Chicago.
 ${ }^{\perp}$ Present address: Tom's of Maine, 302 Lafayette Center, Kennebunk, ME 04043.

